\qquad
\qquad
Algebra II, Period \qquad Math Department

Final Exam Review Packet - Algebra II

- This review packet contains questions that are similar to the type of problems that you will encounter on the exam.
- The in-class review is not meant to re-teach you everything from the second semester. It will be a quick, but thorough overview of the material.
- It is recommended that you work on this review packet leading up to your exam day so you have questions ready. Don't wait till the last minute.
- Remember that the exam counts for 20% or your course grade.
- Reviewing for the exam is YOUR responsibility.
- If you have questions as you prepare, make arrangements to see your teacher.

I. Quadratics Equations

Solve each of the following equations using factoring.

a. $x^{2}-36=0$	b. $7 x^{2}-14 x=0$
c. $x^{3}-6 x^{2}-7 x=0$	d. $6 x^{2}+7 x-3=0$
e. $3 x^{2}+3 x-36=0$	f. $32 x^{2}-2=0$
g. $x^{3}-2 x^{2}-9 x+18=0$	h. $x^{3}-3 x^{2}+6 x-18=0$

g. $x^{3}-2 x^{2}-9 x+18=0$
h. $x^{3}-3 x^{2}+6 x-18=0$

Quadratics Equations (continued)
Factor each polynomial COMPLETELY.
Sum of Two Cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Difference of Two Cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
a. $x^{3}+27$
C. $x^{4}+5 x^{2}-14$
b. $8 x^{3}-125$
d. $2 x^{5}-18 x^{3}+40 x$

Solve each of the following equations using the Quadratic Formula.

$$
\text { Quadratic Formula: } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

a. $4 x^{2}+6 x+1=0$
C. $2 x^{2}+3 x-5=0$
b. $x^{2}+2 x+2=0$
d. $3 x^{2}-2 x-7=0$

II. Powers, Roots, and Radicals

Rewrite the expression with positive exponents. Evaluate where possible.

| a. $(-3)^{-4}$ | b. $\frac{4}{x^{0}+7}$ | c. $3 x^{3}(2 x)^{2}$ |
| :--- | :--- | :--- | :--- |
| d. $\frac{8 a^{4} b^{6}}{2\left(a^{5} b\right)^{2}}$ | e. $4\left(x^{-3} y^{4}\right)\left(-3 x y^{2}\right)^{2}$ | f. $\frac{20\left(a^{-4} b^{-2}\right)}{8\left(a^{-2} b^{4}\right)^{-2}}$ |

Solve the radical or rational exponent equation.

| a. $x^{\frac{1}{5}}=2$ | b. $2 \sqrt{3 x-1}+3=11$ | c. $4 x^{2}=64$ |
| :--- | :--- | :--- | :--- |
| d. $2(x-2)^{\frac{1}{4}}-3=159$ | e. $\sqrt{2 x+4}=\sqrt{x+2}$ | f. $\sqrt[3]{x}-6=-2$ |
| | | |

III. Simplifying Rational Expressions

Simplify the Rational Expression using Multiplication or Division.

a. $\frac{x^{2}+4 x-12}{x^{2}\left(x^{2}+9 x+18\right)} \cdot 6 x^{2}$
f. $\frac{12 x^{2} y^{3} z}{6 x^{3} y^{2} z^{2}}$
b. $\frac{3 x^{2}-12}{5 x-10} \cdot \frac{1}{2 x+4}$
g. $\frac{x^{3}+3 x^{2}}{2 x} \div \frac{x^{2}+5 x+6}{5 x^{3}}$
c. $\frac{x^{2}-4}{x^{2}+4} \cdot \frac{x+2}{x-2}$
h. $\frac{x^{2}+x-20}{x+1} \div \frac{11 x+55}{x+1}$
d. $\frac{5 x^{2}-20}{25 x^{2}} \cdot \frac{x}{x-2}$
i. $\frac{x^{2}+5 x+6}{x+3} \div \frac{x^{2}-4}{x+1}$
e. $x^{2}+x-30 \cdot \frac{x}{x^{2}+6 x}$
j. $\frac{x^{2}+6 x-7}{3 x^{2}} \div \frac{x+7}{6 x}$

Simplifying Rational Expressions (continued)
Simplify the Rational Expression using Addition or Subtraction. (LCD = ?)
a. $\frac{4}{3 x^{2}}+\frac{2}{5 x}$
b. $\frac{3}{2 x-2}+\frac{x+1}{4}$
c. $\frac{4}{3 x^{3}}+\frac{x}{6 x^{3}+3 x^{2}}$
d. $\frac{5 x-1}{x^{2}+2 x-8}-\frac{6}{x+4}$
e. $\frac{x+1}{x^{2}+6 x+9}-\frac{1}{x^{2}-9}$

IV. Solving Rational Equations

Solve each rational equation.
a. $\frac{3}{x+4}=\frac{9}{x-2}$
b. $\frac{4 x}{x-1}=\frac{x}{x^{2}-1}$
c. $\frac{3}{x^{2}-4}=\frac{2}{x+2}+\frac{x}{x-2}$
d. $\frac{3 x-2}{x-2}=\frac{6}{x^{2}-4}+1$
e. $\frac{x}{x+2}=\frac{3 x+1}{x-1}+\frac{4}{x^{2}+x-2}$

V. Function Operations

Perform the indicated operation with the functions given.

 Let $f(x)=x^{2}-3 x+4, g(x)=5 x+2$, and $h(x)=6 x$.| a. $\quad(f+g)(x)=$ | b. $(f-h)(x)=$ | c. $(g \cdot h)(x)=$ |
| :--- | :--- | :--- |
| d. $\quad(f+h)(-2)=$ | e. $(h-g)(3)=$ | |
| g. $\quad(f \circ g)(x)=$ | | f. $(g \cdot f)(0)=$ |
| j. $\quad(f \circ h)(-7)=$ | h. $(f \circ h)(x)=$ | |

VI. Inverses

Find the inverse of each function.

a. $f(x)=2 x+5$
b. $f(x)=\sqrt[3]{2 x+4}$
c. $f(x)=5-\frac{5}{2} x$
d. $f(x)=\frac{x-2}{4}$

Verify that the two functions are inverses of each other using composite functions. Then, verify (a) and (b) by graphing.
a. $f(x)=x+7, g(x)=x-7$

C. $f(x)=\frac{1}{3} x^{2}, g(x)=\sqrt{3 x}$
b. $\quad f(x)=\frac{1}{2} x+1, g(x)=2 x-2$

d.

$$
f(x)=\frac{x^{5}+2}{7}, g(x)=\sqrt[5]{7 x-2}
$$

VII. Exponential \& Logarithmic Functions

Solve each equation.

$y=\log _{b} x$ if and only if $x=b^{y}$.
Think of $y=\log _{b} x$ as the answer to: "To what power must b be raised to obtain x ?"

a. $\left(\frac{1}{3}\right)^{x}=27$	b. $5^{3 x}=25^{x-1}$	C. $4^{x}=0.25$
d. $10^{x}=15$	e. $e^{3 x}=24$	f. $\ln 3 x=-0.5003$
g. $\log _{x} 64=\frac{1}{2}$	h. $\log _{3} x=5$	i. $\log _{4} 256=x$
j. $\quad \log _{7}(2 x+5)=\log _{7}(x-3)$	k. $\quad \log _{2}\left(2 x^{2}\right)=5$	I. $\log x=2.096910013$
m. $256 e^{2 x}=1400$	n. $75=21(1.05)^{t}$	o. $10^{x^{2}+3 x-7}=1,000$

Exponential \& Logarithmic Functions (continued)

Write the logs in condensed form.	Write the logs in expanded form.
a. $2 \log x-x \log y$	b. $\log x^{2} y^{3} z^{4}$
c. $\log x+2 \log y$	d. $\log \left(x^{2}+1\right) z$

e. $\log x+\frac{1}{2} \log y-2 \log z$
f. $\log \frac{x^{2}}{z^{6}}$
g. $\log x+\log y+\log z-2 \log w$
h. $\quad \log x^{2} y$

Exponential \& Logarithmic Functions (continued)

Use the equation given and the properties of logs to solve the problems below:
(1) $A=P\left(1+\frac{r}{n}\right)^{n t}$
(2) $A=P e^{r t}$
where:

- $P=$ original amount deposited or the initial investment
- $r=$ the interest rate expressed as a decimal ($5 \% \rightarrow 0.05$)
- $n=$ the number of times a year the interest is paid ("quarterly" \rightarrow means $n=4$)
- $t=$ the number of years the investment spans
a. Find the value of a $\$ 1,000$ investment at 6\% interest after 10 years compounded:
(a) annually
(b) quarterly
(c) monthly
(d) continuously
b. If you invest $\$ 30,000$ at 4.76% interest paid quarterly, how long would it take you to double your money? Round your answer to the nearest hundredth.
d. You invest $\$ 200$ at 12.25\% earning continuous interest. How many years does it take for your money to increase 5 times its original value? Round your answer to the nearest tenth.

