Name: _____

Algebra II, Period ____

Date: _____

Math Department

Final Exam Review Packet - Algebra II

- This review packet contains questions that are similar to the type of problems that you will encounter on the exam.
- The in-class review is not meant to re-teach you everything from the second semester. It will be a quick, but thorough overview of the material.
- It is recommended that you work on this review packet leading up to your exam day so you have questions ready. Don't wait till the last minute.
- Remember that the exam counts for 20% or your course grade.
- Reviewing for the exam is **YOUR** responsibility.
- If you have questions as you prepare, make arrangements to see your teacher.

I. Quadratics Equations

Solve each of the following equations using factoring.		
a. $x^2 - 36 = 0$	b. $7x^2 - 14x = 0$	
C. $x^3 - 6x^2 - 7x = 0$	d. $6x^2 + 7x - 3 = 0$	
e. $3x^2 + 3x - 36 = 0$	f. $32x^2 - 2 = 0$	
$g. x^3 - 2x^2 - 9x + 18 = 0$	h. $x^3 - 3x^2 + 6x - 18 = 0$	

Quadratics Equations (continued)

Factor each polynomial COMPLETELY.		
Sum of Two Cubes: $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$		
Difference of Two Cube	s: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	
a. $x^3 + 27$	b. $8x^3 - 125$	
C. $x^4 + 5x^2 - 14$	d. $2x^5 - 18x^3 + 40x$	

Sol	Solve each of the following equations using the Quadratic Formula.	
	Quadratic For	mula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
a.	$4x^2 + 6x + 1 = 0$	b. $x^2 + 2x + 2 = 0$

C. $2x^2 + 3x - 5 = 0$	d. $3x^2 - 2x - 7 = 0$

II. Powers, Roots, and Radicals

Rewrite the expression w	vith positive exponents. Ev	aluate where possible.
a. (-3) ⁻⁴	b. $\frac{4}{x^0 + 7}$	C. $3x^3(2x)^2$
d. $\frac{8a^4b^6}{2(a^5b)^2}$	e. $4(x^{-3}y^4)(-3xy^2)^2$	f. $\frac{20(a^{-4}b^{-2})}{8(a^{-2}b^{4})^{-2}}$

Solve the radical or rational exponent equation.		
a. $x^{\frac{1}{5}} = 2$	b. $2\sqrt{3x-1}+3=11$	C. $4x^2 = 64$
d. $2(x-2)^{\frac{1}{4}}-3=159$	e. $\sqrt{2x+4} = \sqrt{x+2}$	f. $\sqrt[3]{x} - 6 = -2$

III. Simplifying Rational Expressions

Simplify the Rational Expression using Multiplication or Division.		
a. $\frac{x^2 + 4x - 12}{x^2 (x^2 + 9x + 18)} \cdot 6x^2$	f. $\frac{12x^2y^3z}{6x^3y^2z^2}$	
$-2u^2$ 12 1	$n^3 + 2n^2 + 5n + 6$	
b. $\frac{3x^2 - 12}{5x - 10} \cdot \frac{1}{2x + 4}$	g. $\frac{x^3 + 3x^2}{2x} \div \frac{x^2 + 5x + 6}{5x^3}$	
$c. \frac{x^2 - 4}{x^2 + 4} \cdot \frac{x + 2}{x - 2}$	h. $\frac{x^2 + x - 20}{x + 1} \div \frac{11x + 55}{x + 1}$	
d. $\frac{5x^2 - 20}{25x^2} \cdot \frac{x}{x - 2}$	i. $\frac{x^2 + 5x + 6}{x + 3} \div \frac{x^2 - 4}{x + 1}$	
$e. x^2 + x - 30 \cdot \frac{x}{x^2 + 6x}$	j. $\frac{x^2 + 6x - 7}{3x^2} \div \frac{x + 7}{6x}$	

Simplifying Rational Expressions (continued)

Simplify the Rational Expression using Addition or Subtraction. (LCD = ?)

a. $\frac{4}{3x^2} + \frac{2}{5x}$

b.
$$\frac{3}{2x-2} + \frac{x+1}{4}$$

C.
$$\frac{4}{3x^3} + \frac{x}{6x^3 + 3x^2}$$

d.
$$\frac{5x-1}{x^2+2x-8} - \frac{6}{x+4}$$

e.
$$\frac{x+1}{x^2+6x+9} - \frac{1}{x^2-9}$$

IV. Solving Rational Equations

Solve each rational equation.

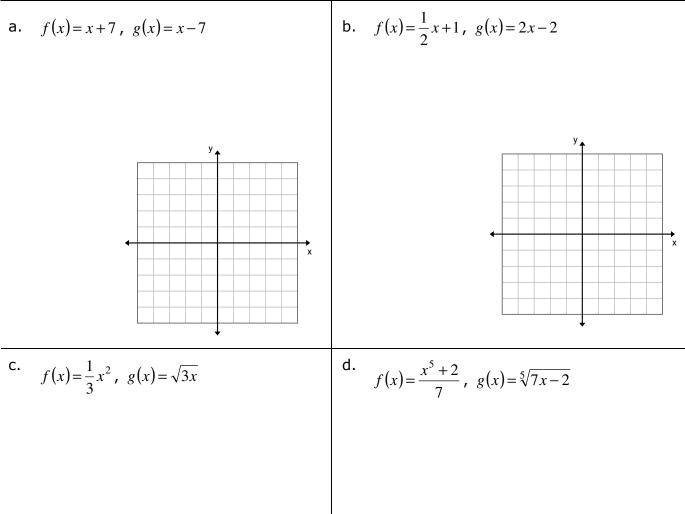
a. $\frac{3}{x+4} = \frac{9}{x-2}$

b.
$$\frac{4x}{x-1} = \frac{x}{x^2-1}$$

c.
$$\frac{3}{x^2 - 4} = \frac{2}{x + 2} + \frac{x}{x - 2}$$

d.
$$\frac{3x-2}{x-2} = \frac{6}{x^2-4} + 1$$

e. $\frac{x}{x+2} = \frac{3x+1}{x-1} + \frac{4}{x^2 + x - 2}$


V. Function Operations

Let $f(x) = x^2 - 3x + 4$, $g(x) = 5x + 2$, and $h(x) = 6x$. a. $(f + g)(x) =$ b. $(f - h)(x) =$ c. $(g \cdot h)(x) =$ d. $(f + h)(-2) =$ e. $(h - g)(3) =$ f. $(g \cdot f)(0) =$ g. $(f \circ g)(x) =$ h. $(f \circ h)(x) =$ i. $(g \circ f)(1) =$ j. $(f \circ h)(-7) =$ k. $g(h(f(x))) =$ i. $f(g(h(-1))) =$	Perform the indicated operation with the functions given.		
d. $(f+h)(-2)=$ e. $(h-g)(3)=$ f. $(g \cdot f)(0)=$ g. $(f \circ g)(x) =$ h. $(f \circ h)(x) =$ i. $(g \circ f)(1) =$	Let $f(x) = x^2 - 3x + 4$, $g(x) = 5$	x+2, and $h(x) = 6x$.	
g. $(f \circ g)(x) =$ h. $(f \circ h)(x) =$ i. $(g \circ f)(1) =$	a. $(f+g)(x) =$	b. $(f-h)(x) =$	C. $(g \cdot h)(x) =$
	d. $(f+h)(-2) =$	e. $(h-g)(3) =$	f. $(g \cdot f)(0) =$
j. $(f \circ h)(-7) =$ k. $g(h(f(x))) =$ l. $f(g(h(-1))) =$	g. $(f \circ g)(x) =$	h. $(f \circ h)(x) =$	i. $(g \circ f)(1) =$
7 of 11	j. (<i>f</i> ∘ <i>h</i>)(−7) =		I. $f(g(h(-1))) =$

VI. Inverses

Find the inverse of each function.		
a. f(x) = 2x + 5	b. $f(x) = \sqrt[3]{2x+4}$	
$f(x) = 5 - \frac{5}{2}x$	$d. f(x) = \frac{x-2}{4}$	

Verify that the two functions are inverses of each other using composite functions. Then, verify (a) and (b) by graphing.

The graph of the inverse function is the reflection of the original function over what line?

VII. Exponential & Logarithmic Functions

Solve each equation. $y = \log_b x$ if and only if $x = b^y$. Think of $y = \log_b x$ as the answer to: "To what power must *b* be raised to obtain *x*?" b. $5^{3x} = 25^{x-1}$ a. $\left(\frac{1}{3}\right)^x = 27$ C. $4^x = 0.25$ e. $e^{3x} = 24$ d. $10^x = 15$ f. $\ln 3x = -0.5003$ g. $\log_x 64 = \frac{1}{2}$ h. $\log_3 x = 5$ i. $\log_4 256 = x$ k. $\log_2(2x^2) = 5$ j. $\log_7(2x+5) = \log_7(x-3)$ I. $\log x = 2.096910013$ m. $256e^{2x} = 1400$ n. $75 = 21(1.05)^{t}$ $0. \quad 10^{x^2 + 3x - 7} = 1,000$

Write the logs in condensed form. Write the logs in expanded form. $2\log x - x\log y$ b. $\log x^2 y^3 z^4$ a. d. $\log(x^2 + 1)z$ $\log x + 2\log y$ c. f. e. $\log x + \frac{1}{2}\log y - 2\log z$ $\log \frac{x^2}{z^6}$ $\log x + \log y + \log z - 2\log w$ g. h. $\log x^2 y$

Exponential & Logarithmic Functions (continued)

Exponential & Logarithmic Functions (continued)

lle	a the equation given and the propert	ies of logs to solve the problems below:	
(1)	$A = P\left(1 + \frac{r}{n}\right)^{nt}$ where: • $P = \text{ original arr}$ • $r = \text{ the interest}$ • $n = the number of t$	$\frac{1}{n} \int_{0}^{nt} = \frac{1}{n} \int_{0}^{nt} \frac$	
a.	Find the value of a \$1,000 investment at 6% interest after 10 years compounded: (a) annually	 b. If you invest \$30,000 at 4.76% interest paid quarterly, how long would it take you to double your money? Round your answer to the nearest hundredth. 	
	(b) quarterly		
	(c) monthly		
	(d) continuously		
с.	Suppose \$2,000 is invested in a 3- year certificate of deposit (CD) that earns 6% interest, compounded continuously. How much will the investment be worth after 3 years?	d. You invest \$200 at 12.25% earning continuous interest. How many years does it take for your money to increase 5 times its original value? Round your answer to the nearest tenth.	